
Sponsored by the Defense Advanced Research
Projects Agency (DoD) DTIC

AD-A267 516 DARPA/CSTO ELECTE

Title of Contract: C

"A Proposed Research Program in Strategic
Computing"

Project:
SIMS: Single Interface to Multiple Systems

DARPA Order No. 6096
Issued by DSS-W under Contract

MDA903-87-C-0641

Period of Performance: 09/01/87 - 08/31/92
CLEARED

FOR OPEN PUBLICATION

jbu 2 8 1993 4

DIRECTORATE FOR FREEDOM OF INFORMArO n7"
A•IOSECURITY REV!EW(OASO-PA)

DEPARTM4ENT OF DEFENSE

The views and conclusions contained in this document are those of the author and should

not be interpreted as representing the official poliites either expressed or implied of the
Defense Advanced Research Projects Agency or the U.S. Government.

. - ": - *

APiC' F

6i U

1 Task Objectives

The ultimate goal of the SIMS project was to relieve a user of computer services of the need
to be familiar with the various services available. In the SIMS view, the user should make
requests as though he or she were dealing with a single, seamless service. SIMS analyzes
the user request, determines the necessary calls on the various services, and executes them.
As a consequence, SIMS must devote considerable effort to the planning mechanism that
establishes the sequence of service calls that will satisfy the user's request.

Most tasks performed by users of information systems involve interaction with multiple
software servers. Examples can be found in the areas of resource planning and briefing ap-
plications, in analysis (both of intelligence data and logistics forecasting), and in command
and control. A typical task of this kind may involve retrieval of data from several databases,
data interpretation, numerical calculations, and report generation. It may also involve in-
corporation of information generated by expert systems. The result of processing data from
one source may have to be fed as input to another.

Besides performing different functions, servers will usually also differ considerably in their
input languages. The user of multiple services must be familiar with them all in order to
decompose his/her task into commands to the various servers and then in order to provide
the required input to each server. We call this problem the software integration problem.

Until now, the only approach to the software integration problem has been to build cus-
tom systems that support an integrated view of the underlying servers. Such systems are
expensive, are suitable only for the application for which they were crafted, are relatively
inflexible with respect to functionality, and are difficult to modify. For example, the incorpo-
ration of an additional server may very well require rewriting the entire custom integration
system, with no obvious way to take advantage of the experience gained when writing the
existing version. In contrast, SIMS would allow maintainers to assimilate additional servers
into the system through a much less painful process of building a declarative model of that
ser'er, allowing the SIMS planner to perform the integration task.

The SIMS system has been applied to the domain of information needed for daily Naval
briefings to the Commander in Chief of the Pacific Fleet. Three (simulated) databases,
containing information about ships' locations, activities, and readiness status, are accessed
by the system.

2 Technical Approach

SIMS attempts to solve the problem of software integration by dispensing with the custom
system approach and providing instead for logical integration.' Within SIMS, the various

'An earlier version of SIMS, of which the current one is an extension and an enhancement, is described
in [Pavlin88a, Pavlin88b].

Domain F Goa Working
Model Modification Memory

User Goal Pann
Goal " Repair P Plan

(Virtual)

Goal - Goal Service

Model Rephrasing Capability
Model

Figure 1: SIMS Overview Diagram

services remain separate. In order to make use of them, their capabilities must be represented
in some common way. Thus, their capabilities are modeled in the form of plan operators.
Each operator represents a type of request, or command, that may be issued to one of the
servers. In addition, SIMS models the application domain and possible user goals, for reasons
that will be explained below.

Figure 1 describes the flow information among the various processing and model compo-
nents of SIMS. SIMS' components are described in more detail later in the paper.

The user presents a goal to the system in a server-independent interaction language. The
user's goal is first inspected to ascertain that its form is acceptable. Since SIMS insulates
the user from the available services, it is expected that user goals will often not be well
formed: they might refer to objects that are not represented in the model, or m;ght use
wrong names for objects that are. Goals that are not well-formed will have to undergo
Repair, one of three types of goal reformulation 2 that SIMS supports. Information about
goals is represented explicitly within SIMS' model, and is used to support goal repair.

Once a correct form for the goal is established, it activates SIMS' planner, which attempts

2 1n a slightly different context, this idea of goal reformulation was raised in [Neches85].

2

41

to achieve it using the available operators. If a plan is successfully constructed, SIMS then
performs it, accessing databases and programs, integrating the results, and presenting them
to the user.

If the planner fails to devise a plan for a given goal, SIMS will engages in further processes
of goal reformulation. When a goal is not immediately tractable, it may be possible to analyze
relations between that goal and others known to SIMS, and to come up with a different goal
(or collection of goals) whose achievement would subsume the original one. This process
is called Goal Rephrasing. If the user's goal can be reformulated, an additional attempt is
made to plan for the new goal(s). If this is still unsuccessful, SIMS may attempt to Modify
the goal, replacing it with a different goal that achieves a similar purpose. This type of goal
reformulation is not currently implemented.

The plan finally obtained can then be executed, and the results presented to the user.

In [Swartout88], Drew McDermott notes that

Every planning method we know of relies on dividing a problem into pieces,
producing plans for the pieces, and reconciling them. It is hard to divide an
arbitrary statement (replete with quantifiers, connectives, and modalities) into
pieces that make sense.

SIMS' explicit representation of goals, and relationships they may have to each other, goes
a long way towards allowing a planner to succeed even when it can find no way to divide a
given goal. In such cases, the SIMS planner may be able to use knowledge available to it
about the semantics of goals to replace one with a more tractable other.

The following section describes SIMS' planning, modeling, and the goal reformulation
processes in more detail.

3 General Methodology

Develop the theoretical approach hand-in-hand with a working implementation of the theory
in a computer program. i

NTIS CRA&i

4 Technical Results TIC TAB
lnrmOr -eed 1- I

4.1 Summary of Results

SIMS has made progress along all significant dimensions of its approach to the software
integration problem: *.t•,ty Codes

Avdal a'•ldor

3
DnC QALM NSPETED

e SIMS operates using a general purpose planner, for which individual queries to
databases serve as operators.

@ All data services available through SIMS are accessed uniformly by stating requests
in the LOOM knowledge representation language. Requests are analyzed using both
built-in LOOM reasoning facilities and SIMS-specific ones.

* SIMS has developed models of four different database tables containing actual (sani-
tized) information from the CINCPACFLT domain. The data in these tables is accessed
and combined without and modification to the DBMS itself.

* Several goal reformulation strategies have been developed and implemented. In some
cases, SIMS can correct syntactically flawed user requests. It is capable of replacing
goals which it cannot achieve with equivalent combinations of goals which it can.

In order to perform reformulations and to plan the sequence of server calls that will
achieve a given user's task, SIMS' planner must access the representations of the application
domain, of user goals, and of server capabilities. This information is described using the
general-purpose knowledge representation language which is described in the next section.

4.2 Model Implementation: Loom

Loom[MacGregor88] is a language and environment for constructing intelligent applications.
It combines features of both frame-based and semantic network languages, and provides
some reasoning facilities. Loom is used for all modeling and most reasoning in SIMS.

The heart of the Loom system is a powerful knowledge representation system, which
is used to provide deductive support for the declarative portion of the Loom language.
Declarative knowledge in Loom consists of definitions, rules, facts, and default rules. A
deductive engine called a classifier utilizes forward-chaining, semantic unification and object-
oriented truth maintenance technologies in order to compile the declarative knowledge into
a network designed to efficiently support on-line deductive query processing.

The Loom system includes a semantic pattein matcher for interpreting production rules,
and a pattern-directed method dispatching facility that supports the definition of object-
oriented methods. The high degree of integration between Loom's declarative and procedural
components permits programmers to utilize the logic programming, production rule, and
object-oriented programming paradigms within a single application.

For a detailed description of Loom see [MacGregor88].

4

Regional

TAXONOSUK

wOMPOM'T

Reego.*

Figure 2: Fragment of Domain Model Containing Pacific Regional Situation.

4.3 The Modeling

Although SIMS contains a single model which includes descriptions of all relevant entities
and relations among them in a uniform knowledge representation language, we conceptually
divide SIMS' model into several parts:

"* Application Domain Model
"* Working Memory
"* Service Capability Model
"* Virtual Service Capability Model, and
"* Goal Model

4.3.1 Application Domain Model

This contains a specification of objects in the domain of the SIMS system and their hierar-
chical organization into classes, as well as relations among classes. Taxonomic information
is indicated by the standard isa relationship.

"7or example, the domain model for the Naval briefing application SIMS currently uses
for demonstration purposes includes the concept Pacific Regional Situation. It is a subclass
of Regional Situation. It stands in the Component relation to other objects which make
up a situation briefing about a Pacific region: the name of the Pacific Region involved, a
Map of that region, the Ships located in it, and the Employment Schedules of those ships.
In addition, there are Functional relations between some pairs of these concepts, indicating
that operators exist which can provide one object given another, as shown in Figure 2.

5

4.3.2 Working Memory

A collection of specific facts about the application domain which were obtained in the course
of the current SIMS session. For example, a user inquiry about the location of a particular
ship will result in a call to a particular database. In addition to being presented to the user,
the information obtained from the database will be added to working memory, to avoid any
need to retrieve it again in response to another request. At present, we do not address the
possibility that such information may change in the course of a single SIMS session - other
than by explicit application of operators, as described next.

4.3.3 Service Capability Model

Service capabilities are represented in SIMS as a collection of operators, each standing for
a "primitive" operation provided by a service. The representation of each operator contains
an indication of the goal it is capable of achieving, any preconditions that must be fulfilled
for it to be applicable, a method for its application - i.e., a description of the actual call
on the service and how to recast the results, if any - and postconditions of the operator's
application. The postconditions typically involve modifications to working memory. Opera-
tor structure in SIMS is similar to that which is used in most bottom-up planners patterned
after STRIPS.[Fikes7l]

Below is an English rendition of an example, a simplified version of the operator
Employments- Given-Ship.

Name Employments-Given-Ship
Goal Retrieve ship's employment

schedule
Preconds Ship is given
Method Issue Retrieval command to

Oracle database of quar-
terly employment schedules

Postconds Assert knowledge of ship's
employment schedule

4.3.4 Virtual Service Capability Model

Once SIMS' planner finds a plan - a sequence of operators capable of achieving the user's
goal - it creates a new operator representing a virtual service, of a structure similar to that
of the operators described above. The method of a virtual operator will be more complex,
typically involving several service calls. This capability resembles the chunking of operators
in SOAR [Laird87], and enhances the speed of SIMS work over time.

Virtual services that the SIMS designer assumes will be useful can be predefined.

6

STAXONOMIC
"*I. COMPONET

Situation

Detennine
Region

Ma Of =P Epo°~

Figure 3: Fragment of Goal Model Containing Retrieve Pacific Situation.

4.3.5 Goal Model

User Goals are hierarchically organized: also, relations among them, and between them
and domain objects, are explicitly represented. This is done, again, using the knowledge
representation language Loom.

Loom provides great benefits to the modeler. The goal structure often is a reflection of
the structure of the domain model. For example, the structure of Pacific Regional Situation,
Figure 2, is inherited by the goals involved in retrieving the information concerning the
situation in any specific region selected by the user. (See Figure 3). In Loom, one need only
specify the goal Retrieve Pacific Situation, and the other goals are automatically generated
by Loom's classifier mechanism.

The terminology of the goal model is currently also the service-independent language
which is used by the user to present a task to the system. The need for the end-user to be
familiar with Loom is an inconvenience which we intend to eliminate as we devise a more
natural task description language in the future. However, even the current language is a
major improvement over the need to be familiar with a multiplicity of access languages.

4.4 The Planning

The planning capabilities required to produce SIMS functionality is general enough to be
implemented in a number of planning paradigms. The one selected will, however, have an
effect on the performance of the system, and possibly on which problems may and may not
be solvable. In the current version we have chosen to write a planner patterned generally
after STRIPS.[Fikes7l]

7

SIMS' planning process benefits from the fact that goals are ro,)resented irn inguage
that allows their semantics to be expressed. In this respect it is q te different from other
STRIPS-based planners. Every planner must match goals to operators which can be used to
achieve them. In most cases such matching is done syntactically, using some form of pattern-
matching. In SIMS, however, the matching is done using facilities provided by the knowledge
representation language, which has access to semantic information not typically available in
syntactic pattern matchers. This is of particular significance for goal reformulation, which
we describe next.

4.5 Goal Reformulation

Every planner faces the problem of finding an operator that is capable of achieving a given
goal. This is usually ascertained by comparing the desired goal state with a description of
the operator's effects - part of the definition of the operator. The comparison is performed
by some variant of the process of pattern matching. If the goal state does not match the
patterns of any of the operators, an impasse is reached.

When SIMS' general planner fails a far more refined process of operator selection is possi-
ble. Both the goal state and the operators' effects are described in the model, represented in
Loom, and the system thus has much detailed knowledge about them. In particular, Loom
has a built-in reasoner, the classifier, that can be used to pre-compute and cache a large
number of inferences about relationships among operators. If a given goal does not belong
to the class of goals achievable by any operator, the planner engages in a knowledge-based
process of goal reformulation. This process involves analyzing the knowledge base's represen-
tation of goals and relations among them in order to transform a goal that does not directly
match any operator capabilities into a combination of goals that do.

Three classes of goal reformulation are addressed by SIMS. Goal repair, goal rephrasing,
and goal modification. Examples of the first two classes have been implemented.

4.5.1 Goal Repair

Goal repair takes place when the user goal, as presented to SIMS, is not well formed, i.e.,
when it cannot be ciassuied by Loom in the model. The repair component addresses this by
attempting to replace elements of the goal until a well formed one is arrived at. This is done
using knowledge of the domain and the structure of goals.

For example, a user may request that SIMS3

Display ships, Region - Sea of Japan

'This and all other examples in this paper are paraphrased in English, for readability.

8

The Loom classifier fails on this goal, since region is not defined as a role on ships. Navy
personnel refer to the region within which a ship is employed by the term emgeo. Region
happens to be a role on map, designating the geographic region it represents. Since region
designates a geographic region, and ship does have a role (emgeo) designating a geographic
region, SIMS replaces region with cmgeo. This produces the well formed goal

Display ships, Emgeo = Sea of Japan

4.5.2 Goal Rephrasing

Goal rephrasing is engaged in when a goal is well-formed, but no plan is associated with the
goal. The process of rephrasing involves the use of knowledge of the structure of the goal
hie-archy to replace the goal with a semantically identical combination of others.

Several strategies for this have been identified.

Conjunction: Some unachievable goal state state may be the conjunction of several other
goals. In this case, the original goal is reformulated as the sequence of the conjunct.

For example, the goal class Retrieve Ship Status is not satisfiable by any operator.
However, this class is represented in the model as the union of Retrieve Ship Location.
Retrieve Ship Course, and Retrieve Ship Employment. The original goal is reformu-
lated as the conjunction of the others. Note that the relationship among these goals is
inherited from domain model information similar to that described in Figure 2.

Specification: Some unachievable goal may be a member of a class which is the union
of several other goal classes. In this case, the original goal is reformulated as the goal of
attempting to achieve each of the subordinate goals until some attempt is successful.

For example, assume that the location of ships are stored in databases, separately
for each country of origin. The class Retrieve Ship Location is thus the union of
Retrieve Ship Location for Ship of Country X, for each country X. Given a ship of
unknown origin, the goal of determining its location can be reformulated as the goal of
attempting to find its location in each of the various countries' databases, until success is
achieved.

Subsumption: Some unachievable goal may be subsumed by an achievable one. The former
is reformulated as the latter.

For example, assume that ship displacement is associated not with individual ships, but
rather with ship classes. Thus the goal Retrieve Ship Displacement will be subsumed by
Retrieve Displacement of Ship Class - in fact, this relationship will be inherited from
the relationship between the domain objects Ship and Ship Class. The goal of determining
a ship's displacement will be reformulated as that of determining the displacement of ships
in the given ship's class.

9

4.5.3 Goal Modification

Goal modificat;on is engaged in after the failure of goal rephrasing to obtain a goal for which
a plan can be found. This process attempts to replace the original goal with one which
would result in achieving the same purpose. Determination of the purpose of the original
goal is not simple, and requires establishing the relationship between that goal and higher
level goals the user mrn.o have. It requires knowledge of the overall structure of the user-SIMS
interaction.

To illustrate what is involved in goal modification, let us examine the following scenario.
The user is involved in the planning of a search and rescue mission for a downed plane. The
user hlas chosen to send a rescue ship, and posts the immediate goal

Send ship A

If the system fails to execute this goal, due to the fact that ship A has a powerplant problem,
it would be reasonable to replace it with the goal

Send ship B

for another, currently available, ship B.

However, one cannot conclude that these two goals are always equivalent, and that the
first can always be modified into the second. If the user is planning for a scheduled crew rota-
tion, and for that purpose posts the goal of sending ship A to port, it would be unacceptable
to substitute for that the goal of sending ship B.

4.6 The SIMS Prototype System

ISI has completed implementation of a SIMS prototype system in the domain of daily
Navy briefings at CINCPACFLT. This demonstration system permits access to four sep-
arate database tables in an Oracle database containing information from this domain, in a
manner transparent to the user.

To use the system, a request for data is stated as a goal in the LOOM knowledge repre-
sentation language. Problematic requests may be identified and reformulated by the system:
Two types of reformulation are currently implemented. "Goal Repair" is used to replace
erroneous terms used ir. a user's goal until a well-formed goal is arrived at. Modeled knowl-
edge of sema;.ti(similarity between the terms is used as a guide. "Goal Rephrasing" is used
to replace a goal with which no operator is associated, with another, or a combinat;on of
others, for which plans are available. Modeled knowledge of the structure of possible user
goals and domain concepts is used for this process.

Once planning is successfully completed and a sequence of operators for achieving the
user's goal is found, SQL queries are automatically generated, and the appropriate databases
are accessed remotely over a LAN. The returned data is filtered and combined to satisfy the
user's original query.

10

4.7 Implementation of the SIMS Prototype

The main objective of SIMS is to provide access to a multiple, heterogeneous database
network using a single query language. Because instances of concepts are reified in DBs,
we could not use the reification mechanism provided by LOOM through the ABOX. The
reason being that by definition the ABOX does not provide for multiple reification of an
instances (in a sense, similar instances are "instances" of that one instance), and there are
no mechanism to access databases. Reification is accomplished by providing explicit links
between conceptual objects/relations and their reified terms in the DBs and a set DB access
functions and a planning component to plan DB access necessary because of the added
complexity of multiple reifications (their equivalency as well as different access paths).

4.7.1 Models

SIMS has 3 different kinds of models;

"* the Application Domain Model (APM)
"* models of the different databases (DBM).
"* the Database Terminological Model (DTM)

APM The APM is a model of the domain the user is concerned with. It consist of the
conceptual objects found in the domain and the relations relating those objects.

DBM The DBM is a high level model of the databases (DB) actually used by the appli-
cation to maintain their data. This declares the important characteristics of a particular
class of DB, which allows us to automatically generate a parser to process instances of the
database. DBs are defined in the following manner;

(def-sims-db <type>
:host <pathname-specification-type>
:access-mechanism <access-mechanisms>
&optional :key <index-type>

:table <table-specification> ...)

<type> is the type/class of DB to be defined

:host host name of the DB

:access-mechanism one of :RELATIONAL, :INDEXED, :QUERY-INDEXED

:key <index-type> if specified implies that operations on this DB requires a key/index
specified by <index-type>

11

:table <table-spec> Implies that the database is grouped into tables of relations

:relations <relation-tuple> if specified implies that relations in this DB is not further
organized into tables.

E.g.,

(def-sims-db LCA
:access-mechanism :QUERY-INDEXED
:host PATHNAME
:key RELATION
:query-key STRING
:table SYMBOL)

This means that LCA DBs have the following characteristics;

"* it uses the QUERY-INDEXED access mechanism, ie., that operations on this
type of DB requires both a key and the query type;

"* the relations in this DB is grouped into tables;
"* the key required is an existing relation;
"* the query key required is a string.

In adaition to the modelling of conceptual properties of a DB, a set of DB operations
is required. This module contains functions (LC)M methods) that allow SIMS to interface
to the actual DBs - it is a functional specifi ation of what DB operations are supposed
to do with a standard set of parameters. This makes it easier for the application builder
to add servers to the system, since it is known exactly what kind of functionality must be
provided/declared to SIMS. Currently we've implemented the following interface functions;

"* DB open & closing functions For simple DB such as flat file, it may be provided
by the language itself (OPEN), for more complicated DBs, eg., ORACLE, it
requires the application builder to not only establish a connection (usually via
TCP), but also functions to prompt for account and password (or even mounting
of specific databases).

"* Query reformulating functions. Functions to change the SIMS query into the
query language of the DB.

"* DB accessing function. Functions to actually query the DB, we've defined only
"atomic" queries at the moment, ie., queries specifying a single goal and a con-
straint for data generation queries and two constraints (corresponding to the
domain and range of a relation) for a filtering query. (later we will add side-
effecting DB operations, eg., updating of entries, deletion and data creation (also
tables?)). Since the type of answers returned by a DB query is not necessarily

12

what is required, eq., a DB may return the entire record while only a particular
field of the record is of interest, these functions need to be able to perform this
kind of extraction too.
[Set of functions to deal with problems, eg., how a problem in opening a DB is
handled, whether non-existence of a data (as opposed to one that cannot satisfy
a constraint) is reported as error or ignored, etc.
Hooks for more intelligent accessing functions that can contain multiple con-
straints and goals so that a query may possibly be answered with a single DB
access rather than multiple accesses.]

DTM The DTM is a reification model, ie., it denotes how application domain con-
cepts/relations are reified in actual DBs, how the data is actually represented. This is
the interface between the conceptual level and the "real world" of data processing. The
DTM consist of the terms actually used in the databases that is used to store data in the
application and what domain concepts/relations it correspond to in the APM. Since a partic-
ular APM concept/relation may appear in more than one DB, this implies that the mapping
of APM -* DTM is 1-many. Data representation at the DB level is defined at the level of
numbers, strings and other primitive data types.

Each APM concept that is reified as DB instances has a relation DATA-ACCESSORS
containing the set of reified DB instances which are represented by the concept DB-
ACCLSSOR;

(defconcept db-accessor
:is (:and :primitive

(:the table symbol)
(:the db database)
(:the db-term concept)))

To eliminate the possibility of DB terminological terms superceding or redefining domain
terms or terms from another database (a relation may be used to denote different things in
different DBs), all relations of a DB are defined in a separate knowledgebase partitions (the
conceptual analog to packages in Common Lisp).

E.g.,

(def-sims-dbtable nsn
:type :lca
:key national-stock-number
:query-key "NSN"
:relations
((national_stock.number (alphanumeric 13) transcom-cargo)

(geographic.area.code (alphanumeric 1) geographic-location)

13

(document-number (alphanumeric 14) transcom-requisition-order)
(unit-of-issue (alphanumeric 2) cargo-units)
(quantity (alphanumeric 5) cargo-quantity)
(ship-date (alphanumeric 8) departure-date)
(port.of.embarkation (alphanumeric 3) embarkation-location)
(port-of.embarkation.receipt.date (alphanumeric 8) delivery-date)
(portofembarkation_liftdate (alphanumeric 8) lift-date)
(voyage/flight-.number (alphanumeric 7) passage-number)
(project-code (alphanumeric 3) project)
(issue.priority.designator (alphanumeric 1) priority)
(requireddelivery.date (alphanumeric 8) scheduled-arrival-date)
(tcn (alphanumeric 16) transcom-shipment)))

The 3-tuple for the relations are the DTM term, eg.,

(national.stock.number (alphanumeric 13) transcom-cargo)

The first tuple is the term actually used as the DB relation, the second tuple is the data
type specification, in this case an alphanumeric string of length 13. The third tuple is the
APM concept of this term.

Note that the data type specification is often much broader than is actually the case,
eg., in the above definition, many of the terms are actually represented by numbers, eg.,
quantity, unit-of-issue, etc. or have very specific format, eg., dates in yy/mm/dd format.

[In addition to the above models, there is also a small KB in SIMS consisting of concepts
and relations useful in defining the above models, eg., a small "upper model" of more abstract
concepts useful for domain modelling and primitive data types (eg., numbers, strings, number
ranges, etc.)]

4.7.2 Planner

SIMS performs two basic kind of planning;

"* Actual DB accessing plans that may access multiple DBs.
"* Plans to satisfy a complicated query consisting of multiple plans of the above

nature.

The planner produces 3 different kinds of operators. At the lowest level, the data retrieval
operators provides a direct interface to the databases and work only with specific given
arguments, and there are one operator for each given argument type that access a particular
set of databases. Above that is the "meta" operators, one for each goal, they generate data
retrieval operators to handle data retrievals for specific argument types. The last type of
operators are the "complex" operators that is used to satisfy complicated queries - queries
composed of multiple data retrievals.

14

DB accessing plans These are operators that actually access the DBs to retrieve data
(retrieval operators) or filter predicates to ensure that a concept with a particular relation
have a specific value (filter operators). This task complicated by the fact that:

"* the data may appear in a form different from the one desired by the user.
"* the arguments passed may appear in a form different from the one required for

accessing the DB where the data is stored.

If any of the above happens, then it will be necessary to transform data from one form
to another, this will probably require accessing multiple DBs. Data transformation relies on
the following;

" data is transformed to another form that is also a reification of the same APM
concept as the original concept. For example, given SHIPNAME, "JFK", a
reification of the APM concept SHIP, transform it to a UIC (unit identification
code), another reification of SHIP.

" At least one DB contains two reification of the APM concept of the data in
question. Furthermore, it must be possible to trace a path starting from the
original form, from one DB containing that form and another reification, not
necessarily the desired reification, in a chain until a DB containing the desired
reification and another reification is found. le.,
Given Dg = given data form, Dd = desired data form
(All Ds are different reification of the same APM concept/relation)
find path, in-DB(DBI, Dg, D1)...in-DB(DBn, Dn, Dd)
then, in order to transform Dg to Dd, we first perform in order,
transform Dg to DI in the database DB1 and so on, finally
transform Dn to Dd in database DBn

This is implemented as follows, given a goal to retrieve, GOAL, and the argument, ARG;

"* find out the APM class of ARG, this is done by checking the domain or range of
GOAL.

"* find out the APM reification of ARG, Dd, check which reification of the APM
concept match it (a type check of DB-ACCESSORs in the DATA-ACCESSOR
relation of the concept).

"* check if operators have been defined for this goal, by checking if the relation
DB-FILTER-OPERATOR or DB-RETRIEVAL-OPERATOR has been defined,
if not, define the Meta-DB operator,

This operator is generalized over all reifications of the APM concept, not just for a
specific argument type. One exist for each APM concept/relation that is encountered, this
operator does not access DBs but generate DB operators for specific reifications of the APM
concept-relation. This has the following form;

15

(defmethod <name> (?given)
:situation (ARG-OF-TYPE <APM of ?given> ?given)
:action <call planner>>)

ARG-OF-TYPE is a predicate that takes a APM concept/relation and a DTM concept
instance and returns true iff that DTM concept is a reification of the APM concept/relation.

[<name> is the goal, APM concept/relation, by convention, a data retrieval operator
will be called GET-<APM-concept-name>-INSTS and filter operators are called FILTER-
<APM-concept-name>-INSTS]

The mapping relation between a Meta-Db operator -+ Db operator is 1-many, but we do
not generate the operators all at once but on a as-needed basis. SIMS keeps tracks of access
path that has been used to generate DB operators when given specific arguments so that it
does not need to duplicate computation already done. The DB access path planning is done
as follows;

"• DBs that contain both GOAL and GIVEN are found, and ordered as followb;

goal-type given-type no conversion
goal-type given-term given-term needs to be converted
goal-term given-type goal-term needs to be converted
goal-term given-term both terms need to be converted.

This ordering ensures that when a suitable path is found, the path is optimal,
ie., for example, if the first type is possible, it is best because the DB contains
the relations that corresponds exactly to what is given and what is desired, while
the rest requires some conversion.

"* find DBs that contains GOAL,
For each DB that contains GOAL
if it also contain Dd then done
if it contains Di where Di 0 Dd, then recurse using Di and Dd

"* If a path is found, define an operator using the data-path, save DBs not yet used
in the above step to be used if alternative operators are needed. [see section on
operators to see how they are used and defined]

These are the operators that perform the actual DB accessing, it is generated by the
Meta-DB operators and each operator works for a specific APM reifications only, ie., as
many DB operator are generated as there are reifications of an APM concept/relation (we
generate them on a as-needed basis though).

These operators have the following form;

(defmethod <name> (?given)
:situation (<db-term> ?given)
:action <Db accessing code>)

16

e.g.,

(DEFMETHOD GET-EMPLOYMENT-AREA-INSTS (?SHIPNAME)

:SITUATION (SHIPNAME ?SHIPNAME)
:TITLE "(ACC3663 ACC3659 ACC3648 ACC3647)"

:ACTION ((WHEN (SETQ ?SHIPNAME
(CONVERT-ARGUMENT '(I I IACC3648(uic uchar)

II 1ACC3647(shipname uchar))
?SHIPNAME))

(PERFORM (GENERATE-DB-INSTANCES IIIACC3659(uic empskd2)
II 1ACC3663(emgeo empskd2)

?SHIPNAME)))))

This operator is used to find the EMPLOYMENT-AREA given a SHIPNAME. But the
DB that contains both of the reified terms, accept a UIC instead of SHIPNAME. The given
argument must be converted to a UIC first, done through the UCHAR table of database,
only then can the retrieval proceed. Hence a "simple" retrieval here actually involves using
two separate DB tables.

Composite Plans These are constructed when the query is composed of more than one
subquery. This differs from data retrieval operators in that it does not contain code to
access the DBs but call operators that do. It triggers data retrieval operator construction
and perform the appropriate variable bindings to ensure only instances satisfying the query is
returned. This is necessary especially in cases using the filter operators for a set of instances,
since in general DBs do not allow one to pose a set query, eg.,

Q a (:and (employment-area "JFK" ?region)
(employment-area ?ships ?region)
(class ?ship "AGGRESSIVE")
(readiness-level ?ships M))

[Note that queries always return sets as answers] In this query, the second subquery will
in general return a set of SHIPs, so that the third subquery is a predicate to filter out SHIPs
that do not have READINESS-LEVEL = 1. One cannot pose just one query that uses the
entire set of SHIPs, but must instead pose it one at a time, for each SHIP - hence the
operator itsdf must keep track of instances that work.

In effect, the query, when generalized over the argument type from DTM to its APM
concept, provides the abstract specification of retrieval and conditions that needs to be
satisfied. Argument differences (from the original differences) are resolved at the lower level
by the meta-DB operator, ie., if none of the existing DB operators can be used, then the
meta-DB operator will try to generate a new operator to take care of this case.

For the above query, the following operator is generated; E.g.,

17

(DEFMETHOD ABLE-SHIPS (???SHIP ???SHIP-CLASSES ???READINESS-LEVEL)
:SITUATION (:AND (ARGUMENT-OF-TYPE SHIP ???SHIP)

(ARGUMENT-OF-TYPE SHIP-CLASSES ???SHIP-CLASSES)
(ARGUMENT-OF-TYPE READINESS-LEVEL ???READINESS-LEVEL))

: ACTION
((LET (?S ?R)

(SETQ ?R (PERFORM (SIMS-RETRIEVE IRIEMPLOYMENT-AREA ???SHIP)))
(SETQ ?S (PERFORM (SIMS-SET-RETRIEVE ICISHIP ?R)))
(SETQ ?S (PERFORM (SIMS-SET-FILTER IRICLASS ?S ???SHIP-CLASSES)))
(SETQ ?S (PERFORM (SIMS-SET-FILTER IRIOVERALL-READINESS

?S ???READINESS-LEVEL)))?S)))

Note that an additional argument to specify the goal of this query is optionally supplied,
in this case ABLE-SHIPS. Only one method is generated for each query and it is usable for
all reifications of the required arguments, ie., this method will work even if we used say, the
UIC of the ship instead of the SHIPNAME and no replanning is required. Note that some
of the DB accessors are set operations.

In addition, since the goal is now defined as a concept with the givens as relations on
it, it is now possible to to ask for instances satisfying the above query simply by asking for
instances of this concept, ie., for the above example, we can now ask for

(ABLE-SHIPS "N23245" "SUPPLY" 2)

i.e., instances of ships in the same region as "N23245" whose class is "SUPPLY" and whose
readiness-level is 2.

4.8 List of Publications

" E. Hovy and Y. Arens. Automatic Generation of Formatted Text. In AAAI-91: The
Tenth National Conference on Artificial Intelligence. Anaheim, CA, July 14-19, 1991.

" Y. Arens, E. Hovy and M. Vossers. Categorizing the Knowledge Used in Multimedia
Presentations. In AAAI-91 Workshop on intelligent Multimedia Interfaces. Anaheim,
CA, July 14-19, 1991.

" Y. Arens, L. Miller, and N. K. Sondheimer. Presentation Design Using an Integrated
Knowledge Base. In Intelligent User Interfaces. Edited by Joseph W. Sullivan and
Sherman W. Tyler. Addison-Wesley, 1991.

18

"" Y. Arens, E. Hovy and M. Vossers. Organizing the Knowledge Needed for Multimedia
"Communication. (Presentation to panel - Multimedia in Al: Challenges and Op-
portunities.) In CAIA-91: Proceedings of the Seventh IEEE Conference on Artificial
Intelligence Applications; Volume II: Visuals. Miami Beach, FL, February 24-28, 1991.

"* Y. Arens and E. Hovy. Text Layout as a Problem of Modality Selection. In KBSA-
5: Proceedings of the 5th Annual Knowledge-Based Software Assistant Conference.
Syracuse, New York, September 24-28, 1990.

" Y. Arens and E. Hovy. How to Describe What? Towards a Theory of Modality
Utilization. Proceedings of the Twelfth Annual Conference of the Cognitive Science
Society. MIT, Cambridge, Massachusetts, July 25-28, 1990.

"* Y. Arens. Services and Information Management for Decision Support. AISIG-90:
Proceedings of the Annual AI Systems in Government Conference. George Washington
University, Washington, DC. May 7-11, 1990.

"* Y. Arens. A Knowledge-Based Multi-Modal Interface. AISIG-90: Proceedings of the
Annual AI Systems in Government Conference. George Washington University, W\ash-
ington, DC. May 7-11, 1990.

"* E. Hovy and Y. Arens. Allocating Modalities In Multimedia Communication. Working
Notes: AAAI Spring Symposium on Knowledge-Based Human-Computer Communica-
tion. Stanford University, California. March 27-29, 1990.

"* J. Pavlin and R. L. Bates. SIMS: Single Interface to Multiple Systemrn. Invited Paper
at Tenth International Computer Symposium. University of Dubrovnik, Yugoslavia,
1988. (Also available as ISI Research Report ISI/RR-88-200.)

" J. Pavlin and R. L. Bates, SIMS: A Uniform Environment for Planning and Performing
Users' Tasks. Proceedings of First International Conference on Industrial and Engi-
neering Applications of AI and Ezpert Systems. Tullahoma, TN, 1988.

5 Important Findings and Conclusions

SIMS has made progress along all significant dimensions of its approach to the software
integration problem:

"* SIMS operates using a general purpose planner, for which individual queries to
databases serve as operators.

"* All data services available through SIMS are accessed uniformly by stating requests
in the LOOM knowledge representation language. Requests are analyzed using both
built-in LOOM reasoning facilities and SIMS-specific ones.

19

II

* SIMS has developed models of four different database tables containing actual (sani-
tized) information from the CINCPACFLT domain. The data in these tables is accessed
and combined without and modification to the DBMS itself.

* Several goal reformulation strategies have been developed and implemented. In some
cases, SIMS can correct syntactically flawed user requests. It is capable of replacing
goals which it cannot achieve with equivalent combinations of goals which it can.

6 Significant Hardware Development

None.

7 Special Comments

Research on this topic has been continuing at ISI, under the Services and Information Alan-
agement for decision Systems project. Using the additional familiarity with the problem
gained in the course of the work reported above, coupled with the better understanding of
the issues acquired in the course of that work, the SIMS demonstration system has been
reimplemented along different - although fundamentally similar - principles.

8 Implications for Future Research

The SIMS approach provides important benefits to the multiple-service system user. Among
them are:

* Relieving the user of the need to be familiar with available services;
* Reducing the cost and the extent of the revision required to add a new service

to the system, or to modify an existing one;
* Ensuring that a newly added service is utilized in the execution of all user requests

for which it may be appropriate.

The goal reformulation mechanism in SIMS, by using a declarative model of goals and
their interrelationships, reduces the chance of planner failure due to the inflexibility of match-
ing techniques. Greater planner applicability provides for better responsiveness and adapt-
ability.

In addition, the rigorous structure imposed on goals and operators, and the sophisticated
knowledge representation language used, supports faster turn-around in large-scale opera-
tions. These software engineering gains will result from easier building and maintainability
of the composite system.

20

References

[Erman87] Erman, L. D., J. S. Lark and F. Hayes-Roth, "ABE: An Environment for Engi-
neering Intelligent Systems," Technical Report TTR-ISE-87-106, Teknowledge Inc., Palo
Alto, CA, 1987.

[Fikes7l] Fikes, R. and N. J. Nilsson. "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving," Artificial Intelligence, Vol. 2, 1971, pp. 189-208.

[Laird87] Laird, J. E., A. Newell and P. S. Rosenbloom, "SOAR: An Architecture for General
Intelligence," Art. Int., Vol. 33, No. 1, 1987.

[MacGregor88] MacGregor, R., "A Deductive Pattern Matcher," Proceedings of AAAI-88,
The National Conference on Artificial Intelligence, St. Paul, MN, August, 1988.

[Neches85] Neches, R., W. R. Swartout and J. D. Moore, "Enhanced Maintenance and
Explanation of Expert Systems Through Explicit Models of Their Development," IEEE
Transactions on Software Engineeriqg', Vol. SE-11, No. 11, November 1985, pp. 1337-1351.

[PavlinS8a] Pavlin, Jasmina and Raymond L. Bates, "SIMS: Single Interface to Multi-
ple Systems," Invited Paper at Tenth International Computer Symposium, University of
Dubrovnik, Yugoslavia, 1988. (Also available as ISI Research Report ISI/RR-88-200.)

[Pavlin88b] Pavlin, Jasmina and Raymond L. Bates, "SIMS: A Uniform Environment for
Planning and Performing User's Tasks," Proceedings of First Int. Conf. on Industrial and
Engineering Applications of AI and Expert Systems, Tullahoma, TN, 1988.

[Swartout88] Swartout, William, Ed. "DARPA Santa Cruz Workshop on Planning," AI
Magazine, Vol. 9, No. 2, 1988, pp. 115-130.

21

9 DD Form 1473

22

"R. ORT DOCUMENTATION PAGE
Ia. APORTSERCRITY 1b. RESTIWCTIVE MARKINGS

2a. SECURITY CLASSIFICA WAL/THORfY 2U . DISTRIBUTION/AVAILABIL1Y OF REPORT

___________________________________APPROVED FOR PUBLIC RELEASE
2b ELSIIAINDWGAiGSCHEDULE DlSTRIBUT1iO% U ,L)MITED

4. PERFOAMING ORGANIZATION REPORT NUMBER (a) S.moNrToRibIwGWt UI,~efi-' 13lomiWy)
4dvmnced Research Projects Agency
3701 North Fairfax Drive

ga. NAME OF PERFORMING ORGANIZATION Sb. OFFICE SYMBOL 7a. NAME Olt~fft4XffiANIZATION

USCllnformation Sciences Institute

Sc. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS I'CiIri Slime, and Zip Code)

4876 Admiralty Way
Marina del Rey, CA 90292

So. NAME OF FUNDING/SPONSORING & b. OFFICE SYMBO0L 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION

-- I MDA-903-87-C-0641
Be. ADDRESS (City, State, and ZIP Code) 10 SORC OF FUNDING NMBR
Univeratly of Southern Calif at San Diego (A-034) PROGRAM PROJECT NO. TASK NO. WORK UNIT
Scripps Institute of Oceanography ELEMENT NO. ACCESSION NO.

8603 LaJolla Shores Drive
San Dieco. CA 92093-0234 ________________________

11. TITLE (INCLUDE SECURITY CLASSIFICATION)

Sims

12. PERSONAL AUThOR(ES)

Yigal Arens

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF EPORT (Year. Month,Day) IS5. PAGE COUNT
Final FROM TO0- o r 7

16. SUPPLEMENTARY NOTATION

17. COSATi CODES 18. SUBJECT TERMS (Continue on reverse if necessay and Identtri by biock Fagmber)

FIELD~ GROUP SUB3-GROUP Software Integration, Multidatabases, Database Retrieval. Planning

19. ABSTRACT ('Continue an reverse tf necessary and Idenlly by block numnber)

The Services and Information Management for decision Systems (SIMS) project integrates several computer services
into a single, seamless system, as seen from the user's perspective. This relieves the user of the need to be
familiar with all the services available from the system, enabling the user to make requests as though he or she were
dealing with a single entity. SIMS analyzes the user request. plans the necessary sequence of calls on the services
and executes them. Until now, the only approach to the problem of software integration has been to build custom
systems that support an integrated view of the underlying servers. Such systems are expensive, are suitable only for the

application for which they were canfted, are not very flexible with respect to functionality, and are difficult to modify.
In contrast. SIMS would allow maintainers to asimilate servers into the system through a much less painful process of
building a declarative model of the servers, and allowing the SIMS planner to perform the actual integration
task.

continued on back

20DSRBTO/VJS~YOF ABSTRACT 21, ABTATCURITY CLASSIFICATION

f 2.NAME OF RESPONSIBLE INDIVDUAL Z~b TELEPHONE (include Area F ~ E SYMBOL.dill r
DD FORM 1473, 92 JAN SECURITY C4 W V Et PAGE

